Chunk-Based Verb Reordering in VSO Sentences for Arabic-English Statistical Machine Translation
نویسندگان
چکیده
In Arabic-to-English phrase-based statistical machine translation, a large number of syntactic disfluencies are due to wrong long-range reordering of the verb in VSO sentences, where the verb is anticipated with respect to the English word order. In this paper, we propose a chunk-based reordering technique to automatically detect and displace clause-initial verbs in the Arabic side of a word-aligned parallel corpus. This method is applied to preprocess the training data, and to collect statistics about verb movements. From this analysis, specific verb reordering lattices are then built on the test sentences before decoding them. The application of our reordering methods on the training and test sets results in consistent BLEU score improvements on the NIST-MT 2009 ArabicEnglish benchmark.
منابع مشابه
Chunk-Level Reordering of Source Language Sentences with Automatically Learned Rules for Statistical Machine Translation
In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results ar...
متن کاملFuzzy Syntactic Reordering for Phrase-based Statistical Machine Translation
The quality of Arabic-English statistical machine translation often suffers as a result of standard phrase-based SMT systems’ inability to perform long-range re-orderings, specifically those needed to translate VSO-ordered Arabic sentences. This problem is further exacerbated by the low performance of Arabic parsers on subject and subject span detection. In this paper, we present two parse “fuz...
متن کاملSyntax and Structure in Statistical Translation
In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results ar...
متن کاملA Reordering Approach for Statistical Machine Translation
This paper presents a Markov based hierarchical reordering scheme for lexical reordering to incorporate into phrase-based statistical machine translation system. The goal is to reorder the words and phrases in source language syntactic structure into their corresponding target language syntactic order for making translation easy. Without reordering during language translation, sentences can onl...
متن کاملImproved chunk-level reordering for statistical machine translation
Inspired by previous chunk-level reordering approaches to statistical machine translation, this paper presents two methods to improve the reordering at the chunk level. By introducing a new lattice weighting factor and by reordering the training source data, an improvement is reported on TER and BLEU. Compared to the previous chunklevel reordering approach, the BLEU score improves 1.4% absolute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010